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We recently reported a modification of C–H insertion that per-
mits assembly of six-membered sulfur-containing heterocycles,1

effectively introducing substitution at a remote position to an
existing functionality. The synthetic potential of this reaction has
yet to be demonstrated. In this Letter we describe an application
of this methodology for construction of the quaternary center in
the structure of natural product Bakuchiol, which was isolated
from seeds of Psoralea corylifolia L.,2 and had a variety of applica-
tions. The two features of C–H insertion that make it particularly
useful for this purpose are ease of insertion into a tertiary C–H
bonds, and complete retention of configuration at the insertion
site. Use of the sulfonate modification in this case appropriately
controls the regioselectivity of insertion.

Thus, commercially available (�)-citronellol was converted to
d-sultone 3 using diazosulfonate C–H insertion in a manner identi-
cal to that previously reported by Du Bois (Scheme 1).3 Our mate-
rials matched the reported compounds by spectral data.12

Initially, we attempted to reductively cleave the C–S bond in d-
sultone 3 using SmI2/DMPU.4 However, poor results were obtained.
The expected reductive desulfonation product did appear to form,
but in minor quantities, and contaminated by several byproducts
(transformation of the double bond appeared to have taken place).
Therefore, an alternative route was attempted (Scheme 2). DIBALH
reduction of the ester in 3 to alcohol13 proceeded cleanly. While it
appeared to be possible to transform it to alcohol 6 by conversion
to alkyl halide and treatment with zinc in DME, both of these reac-
tions were riddled with difficulties. Reaction of alcohol 4 with
Ph3P/NBS or Ph3P/I2/ImH proceeded only at high temperatures
(toluene, 90 �C), and in modest yields. Treatment with zinc tended
to produce, along with 6, elimination product 5 and other byprod-
ucts. This elimination product, 5,14 was easily available from 4 by
mesylation and elimination, so we explored the possibility of its
conversion to 6.
ll rights reserved.
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Only a single example of reductive desulfonation of vinylic sul-
fonates appears to have been reported, using lithium in ammonia.5

Under these conditions we saw formation of only small amounts
(�5%) of the desired product. The major product, obtained as an
apparent mixture of diastereomers, was not identified, but it ap-
peared to retain the sulfonate moiety and lack the exomethylene
double bond according to 1H NMR spectrum. Several methods, re-
ported for desulfonation of vinylic sulfones, also had limited suc-
cess (decomposition was observed with Na2S2O4,6 low yields
with BuMgCl–Ni(acac)2 or BuMgCl–Pd(acac)2,7 no reaction with
SmI2 or SmI2-DMPU, moderate yields with Na–EtOH–THF8). Even-
tually, we found that the procedure for desulfonation of vinylsulf-
ones using Bu3SnLi9 was suitable in this case. Although it was
somewhat touchy, this method would produce the desired alcohol
615 in high yield, using two modifications to the reported proce-
dure: (a) use of greater excess of the tin reagent (5 equiv or more)
proved beneficial (b) use of TBAF (THF, reflux, 5 h) instead of silica
gel for elimination of the tin adduct was more effective; also,
nearly complete elimination was happening if the reaction mixture
was warmed up to 0 �C before workup. Thus, effectively, a ‘remote
vinylation’ of citronellol was achieved by this sequence. NMR study
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Scheme 1. Preparation of d-sultone from citronellol by C–H insertion.
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Scheme 3. Preparation of Bakuchiol.
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Scheme 2. Conversion of the sultone to the key intermediate.
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of R-acetylmandelic ester of alcohol 6 (and its independently pre-
pared racemic form) confirmed that no detectable loss of optical
purity took place.

The obtained alcohol was oxidized to the aldehyde,16 and con-
verted to Bakuchiol using the described method (Scheme 3),10,11

via addition of p-methoxyphenyl magnesium bromide or lithium
reagents (the latter was obtained by metal–halogen exchange be-
tween p-bromomethoxybenzene and n-butyllithium), elimination
and demethylation. The synthetic compound matched the natural
product by spectral data and specific rotation.

Thus, synthesis of Bakuchiol was achieved using diazosulfonate
C–H insertion to install the quaternary center, demonstrating the
utility of this methodology. Further studies on synthetic applica-
tions of this modification of C–H insertion are being performed
and will be reported in due course.
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